Perspective on unconventional computing using magnetic skyrmions

Author:

Lee Oscar1ORCID,Msiska Robin23ORCID,Brems Maarten A.4ORCID,Kläui Mathias4ORCID,Kurebayashi Hidekazu156ORCID,Everschor-Sitte Karin2ORCID

Affiliation:

1. London Centre for Nanotechnology, University College London 1 , London WC1H 0AH, United Kingdom

2. Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 2 , 47057 Duisburg, Germany

3. Department of Solid State Sciences, Ghent University 3 , 9000 Ghent, Belgium

4. Institut für Physik, Johannes Gutenberg-Universität Mainz 4 , Staudingerweg 7, 55128 Mainz, Germany

5. Department of Electronic and Electrical Engineering, University College London 5 , London WC1E 7JE, United Kingdom

6. WPI Advanced Institute for Materials Research, Tohoku University 6 , 2-1-1, Katahira, Sendai 980-8577, Japan

Abstract

Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has recently been combined with reservoir computing. This computing paradigm leverages the thermal fluctuations present in many skyrmion systems. Finally, we provide an outlook on the most important challenges in this field.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference175 articles.

1. Deep learning in neural networks: An overview;Neural Networks,2015

2. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network;Physica D,2020

3. Reservoir computing universality with stochastic inputs;IEEE Trans. Neural Networks Learn. Syst.,2020

4. The ‘echo state’ approach to analysing and training recurrent neural networks;Ger. Natl. Res. Cent. Inf. Technol. GMD Technical Report 148,2001

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3