Employing high-temperature-grown SrZrO3 buffer to enhance the electron mobility in La:BaSnO3-based heterostructures

Author:

Ngabonziza Prosper12ORCID,Park Jisung3ORCID,Sigle Wilfried4ORCID,van Aken Peter A.4ORCID,Mannhart Jochen4ORCID,Schlom Darrell G.356ORCID

Affiliation:

1. Department of Physics and Astronomy, Louisiana State University 1 , Baton Rouge, Louisiana 70803, USA

2. Department of Physics, University of Johannesburg 2 , P.O. Box 524 Auckland Park 2006, Johannesburg, South Africa

3. Department of Material Science and Engineering, Cornell University 3 , Ithaca, New York 14853, USA

4. Max Planck Institute for Solid State Research 4 , Heisenbergstr. 1, 70569 Stuttgart, Germany

5. Kavli Institute at Cornell for Nanoscale Science 5 , Ithaca, New York 14853, USA

6. Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2 6 , 12489 Berlin, Germany

Abstract

We report a synthetic route to achieve high electron mobility at room temperature in epitaxial La:BaSnO3/SrZrO3 heterostructures prepared on several oxide substrates. Room-temperature mobilities of 157, 145, and 143 cm2 V−1 s−1 are achieved for heterostructures grown on DyScO3 (110), MgO (001), and TbScO3 (110) crystalline substrates, respectively. This is realized by first employing pulsed laser deposition to grow at very high temperature the SrZrO3 buffer layer to reduce dislocation density in the active layer, then followed by the epitaxial growth of an overlaying La:BaSnO3 active layer by molecular-beam epitaxy. Structural properties of these heterostructures are investigated, and the extracted upper limit of threading dislocations is well below 1.0×1010 cm−2 for buffered films on DyScO3, MgO, and TbScO3 substrates. The present results provide a promising route toward achieving high mobility in buffered La:BaSnO3 films prepared on most, if not all, oxide substrates with large compressive or tensile lattice mismatches to the film.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3