Achieving low driving voltage and high-efficiency afterglow organic light-emitting diodes through host–guest doping

Author:

Xie Gaozhan1ORCID,Wang Jiangchao1,Xue Xudong1,Li Hui1,Guo Ningning1,Li Huanhuan1,Wang Danbei12,Li Mingguang1,Huang Wei13,Chen Runfeng1,Tao Ye1ORCID

Affiliation:

1. State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

2. School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 210023, China

3. Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials and Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shanxi, China

Abstract

Achieving afterglow organic light-emitting diodes (OLEDs) that exhibit the organic ultralong room temperature phosphorescence (OURTP) emission after switching off the applied voltage is highly attractive. However, it is difficult to obtain appropriate emitting layers that are of excellent charge transport ability and OURTP properties simultaneously to fabricate highly efficient afterglow OLEDs. Here, we report an easy but effective strategy to construct afterglow OLEDs via host–guest doping by adopting the excellent carrier transporting materials as rigid host and the commendable OURTP emitters as guest. The resultant green afterglow OLEDs exhibit the state-of-the-art maximum external quantum efficiency, luminance, and OURTP lifetimes of up to 1.47%, 743 cd m−2, and 356 ms, respectively, with the low turn-voltage of 4.4 V. Due to the inherent stable afterglow properties and outstanding carrier transport ability of the emitting layer, the OLEDs show admirable afterglow emission stability with the intensity and lifetimes keeping almost the same for more than ten repeated voltage pulses. The current work paves the way to develop highly efficient and stable afterglow OLEDs by host–guest doping.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3