Invited Article: The oxidation kinetics and mechanisms observed during ultra-high temperature oxidation of (HfZrTiTaNb)C and (HfZrTiTaNb)B2

Author:

Backman Lavina1ORCID,Hunter Brett M.23ORCID,Weaver Mark L.23ORCID,Opila Elizabeth J.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Virginia 1 , Charlottesville, Virginia 22903, USA

2. Department of Metallurgical and Materials Engineering, University of Alabam 2 , Tuscaloosa, Alabama 35401, USA

3. a 2 , Tuscaloosa, Alabama 35401, USA

Abstract

Ultra-high temperature ceramics (UHTCs), most notably transition metal carbides and borides, exhibit melting temperatures exceeding 3000 °C, making them appropriate candidates to withstand the extreme temperatures (∼2000 °C) expected to occur at the leading edges of hypersonic vehicles. However, their propensity to react rapidly with oxygen limits their sustained application. The high entropy paradigm enables the exploration of novel UHTC compositions that may improve on the oxidation resistance of conventional refractory mono-carbides and -diborides. The oxidation kinetics of candidate high entropy group IV + V (HfZrTiTaNb)C and (HfZrTiTaNb)B2 materials were evaluated at 1500–1800 °C using Joule heating in one atmosphere 0.1%–1% oxygen/argon gas mixtures for times up to 15 min. Possible mechanisms based on the resulting complex time, temperature, and oxygen partial pressure dependencies are discussed. The carbides formed porous and intergranular oxides. Oxidation resistance was improved upon a continuous external scale formation. The diborides formed dense external scales and exhibited better oxidation resistance compared to the carbides. This improvement was attributed to the formation of liquid boria. Both compositions showed an unexpected reduction in material consumption at 1800 °C for all times tested, compared to results at lower temperatures. An in-depth analysis of the composition and morphology of the oxide scale and sub-surface regions for specimens tested at 1800 °C revealed that the formation of denser group IV-rich (Hf, Zr, Ti) oxides mitigated the formation of the otherwise detrimental liquid-forming group V (Ta, Nb) oxides, leading to the improved oxidation resistance.

Funder

Office of Naval Research

Virginia Space Grant Consortium

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3