Physically based equation of state for Mie ν-6 fluids

Author:

Reimer Anja1ORCID,van Westen Thijs1ORCID,Gross Joachim1ORCID

Affiliation:

1. Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , Pfaffenwaldring 9, 70569 Stuttgart, Germany

Abstract

We develop a physically based equation of state that describes Mie ν-6 fluids with an accuracy comparable to that of state-of-the-art empirical models. The equation of state is developed within the framework of the uv-theory [T. van Westen and J. Gross, J. Chem. Phys. 155, 244501 (2021)], which is modified by incorporating the third virial coefficient B3 in the low-density description of the model. The new model interpolates between a first-order Weeks–Chandler–Andersen (WCA) perturbation theory at high densities and a modified first-order WCA theory that recovers the virial expansion up to B3 at low densities. A new algebraic equation for the third virial coefficient of Mie ν-6 fluids is developed—other inputs are taken from previous work. Predicted thermodynamic properties and phase equilibria are compared to a comprehensive database of molecular simulation results from the literature, including Mie fluids of repulsive exponents 9 ≤ ν ≤ 48. The new equation of state is applicable to states with densities up to ρ*(T*)⪅1.1+0.12T* and temperatures T* > 0.3. For the Lennard-Jones fluid (ν = 12), the performance of the model is comparable to that of the best empirical equations of state available. As compared to empirical models, the physical basis of the new model provides several advantages, however: (1) the new model is applicable to Mie fluids of repulsive exponents 9 ≤ ν ≤ 48 instead of only ν = 12, (2) the model leads to a better description of the meta-stable and unstable region (which is important for describing interfacial properties by classical density functional theory), and (3) being a first-order perturbation theory, the new model (potentially) allows an easier and more rigorous extension to non-spherical (chain) fluids and mixtures.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3