Collisional excitation of HCNH+ by He and H2: New potential energy surfaces and inelastic rate coefficients

Author:

Bop C. T.1ORCID,Lique F.1ORCID

Affiliation:

1. Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 , F-35000 Rennes, France

Abstract

Protonated molecules have been increasingly detected in the interstellar medium (ISM), and usually astrochemical models fail at reproducing the abundances derived from observational spectra. Rigorous interpretation of the detected interstellar emission lines requires prior calculations of collisional rate coefficients with H2 and He, i.e., the most abundant species in the ISM. In this work, we focus on the excitation of HCNH+ induced by collision with H2 and He. Therefore, we first calculate ab initio potential energy surfaces (PESs) using the explicitly correlated and standard coupled cluster method with single, double, and non-iterative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta basis set. Both the HCNH+–H2 and HCNH+–He potentials are characterized by deep global minima of 1426.60 and 271.72 cm−1, respectively, and large anisotropies. From these PESs, we derive state-to-state inelastic cross sections for the 16 low-lying rotational energy levels of HCNH+ using the quantum mechanical close-coupling approach. The differences between cross sections due to ortho- and para-H2 impacts turn out to be minor. Using a thermal average of these data, we retrieve downward rate coefficients for kinetic temperatures of up to 100 K. As it could be anticipated, differences of up to two orders of magnitude exist between the rate coefficients induced by H2 and He collisions. We expect that our new collision data will help to improve the disagreement between abundances retrieved from observational spectra and astrochemical models.

Funder

HORIZON EUROPE European Research Council

Center National d’Etudes Spatiales

Center National de la Recherche Scientifique

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3