Affiliation:
1. Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 , F-35000 Rennes, France
Abstract
Protonated molecules have been increasingly detected in the interstellar medium (ISM), and usually astrochemical models fail at reproducing the abundances derived from observational spectra. Rigorous interpretation of the detected interstellar emission lines requires prior calculations of collisional rate coefficients with H2 and He, i.e., the most abundant species in the ISM. In this work, we focus on the excitation of HCNH+ induced by collision with H2 and He. Therefore, we first calculate ab initio potential energy surfaces (PESs) using the explicitly correlated and standard coupled cluster method with single, double, and non-iterative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta basis set. Both the HCNH+–H2 and HCNH+–He potentials are characterized by deep global minima of 1426.60 and 271.72 cm−1, respectively, and large anisotropies. From these PESs, we derive state-to-state inelastic cross sections for the 16 low-lying rotational energy levels of HCNH+ using the quantum mechanical close-coupling approach. The differences between cross sections due to ortho- and para-H2 impacts turn out to be minor. Using a thermal average of these data, we retrieve downward rate coefficients for kinetic temperatures of up to 100 K. As it could be anticipated, differences of up to two orders of magnitude exist between the rate coefficients induced by H2 and He collisions. We expect that our new collision data will help to improve the disagreement between abundances retrieved from observational spectra and astrochemical models.
Funder
HORIZON EUROPE European Research Council
Center National d’Etudes Spatiales
Center National de la Recherche Scientifique
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献