Stable white light emission from a single organic molecule via intermolecular hydrogen bond to excited-state intermolecular proton transfer

Author:

Zhou Nonglin12ORCID,Liu Jun1,Deng Rijie1ORCID,Shu You1,Xiang Dexuan1,Shao Xiaona1ORCID

Affiliation:

1. College of Chemistry and Materials Engineering, Huaihua University 1 , Huaihua 418000, China

2. Huaihua University Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material 2 , Huaihua 418000, Hunan, China

Abstract

It is widely recognized that hybrid (organic/inorganic) light emitting diodes (LEDs) are of concern because they use an organic material instead of rare earth phosphors, but extending their lifetime remains challenging. To construct organic luminescent material with high photoluminescence quantum yield (PLQY), a compound named 1-(4-(tert-butyl)phenyl)-2-(4′-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1′-biphenyl]-4-yl)-1H-phenanthro[9,10-d]imidazole (TPBI-BPI) was synthesized by connect two imidazoles units. The PLQY of TPBI-BPI is 0.97 in acetonitrile. The white light emission (WLE) of TPBI-BPI in ethyl acetate solution containing acetic acid was observed, and a solvent-type organic/inorganic hybrid white LED device based on TPBI-BPI was prepared. The luminance efficiency, external quantum efficiency, correlated color temperature, K, and Ra (color rendering index) of the solvent-type WLED are 21.71 lm/W, 12.76%, 6329, and 83.2 at 39.90 mA, respectively. The Commission Internationale de l´Eclairage coordinate of the solvent-type WLED is (0.3135, 0.3507). In addition, the lifetime (T70) of the device can reach 130 h. This is due to the excited state intermolecular proton transfer between TPBI-BPI and acetic acid in ethyl acetate solution after UV illumination. This enables TPBI-BPI to obtain WLE and makes the WLED spectrally stable due to this process's dissipation of UV energy. This work provides a strategy to extend the lifetime of a hybrid LED.

Funder

Scientific Research Foundation of Hunan Provincial Education Department

Natural Science Foundation of Hunan Province

Foundation of Hunan Double First-rate Discipline Construction Projects

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3