First-passage properties of bundled networks

Author:

Yuan Zhenhua123,Peng Junhao123ORCID,Gao Long123,Shao Renxiang123

Affiliation:

1. School of Mathematics and Information Science, Guangzhou University 1 , Guangzhou 510006, China

2. Guangdong Provincial Key Laboratory, co-sponsored by the Province and City of Information Security Technology, Guangzhou University 2 , Guangzhou 510006, China

3. Guangzhou Center for Applied Mathematics, Guangzhou University 3 , Guangzhou 510006, China

Abstract

Bundled networks, obtained by attaching a copy of a fiber structure to each node on the base structure, serve as important realistic models for the geometry and dynamics of nontranslationally invariant systems in condensed matter physics. Here, we analyze the first-passage properties, including the mean first-passage time, the mean-trapping time, the global-mean first-passage time (GFPT), and the stationary distribution, of a biased random walk within such networks, in which a random walker moves to a neighbor on base with probability γ and to a neighbor on fiber with probability 1−γ when the walker at a node on base. We reveal the primary properties of both the base and fiber structure, which govern the first-passage characteristics of the bundled network. Explicit expressions between these quantities in the bundled networks and the related quantities in the component structures are presented. GFPT serves as a crucial indicator for evaluating network transport efficiency. Unexpectedly, bases and fibers with similar scaling of GFPT can construct bundled networks exhibiting different scaling behaviors of GFPT. Therefore, bundled networks can be tailored to accommodate specific dynamic property requirements by choosing a suitable base and fiber structure. These findings contribute to advancing the design and optimization of network structures.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3