Determining internal coordinate sets for optimal representation of molecular vibration

Author:

Oenen Kemal1ORCID,Dinu Dennis F.1ORCID,Liedl Klaus R.1ORCID

Affiliation:

1. Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck , Innrain 80, 6020 Innsbruck, Austria

Abstract

Arising from the harmonic approximation in solving the vibrational Schrödinger equation, normal modes dissect molecular vibrations into distinct degrees of freedom. Normal modes are widely used as they give rise to descriptive vibrational notations and are convenient for expanding anharmonic potential energy surfaces as an alternative to higher-order Taylor series representations. Usually, normal modes are expressed in Cartesian coordinates, which bears drawbacks that can be overcome by switching to internal coordinates. Considering vibrational notations, normal modes with delocalized characters are difficult to denote, but internal coordinates offer a route to clearer notations. Based on the Hessian, normal mode decomposition schemes for a given set of internal coordinates can describe a normal mode by its contributions from internal coordinates. However, choosing a set of internal coordinates is not straightforward. While the Hessian provides unique sets of normal modes, various internal coordinate sets are possible for a given system. In the present work, we employ a normal mode decomposition scheme to choose an optimal set. Therefore, we screen reasonable sets based on topology and symmetry considerations and rely on a metric that minimizes coupling between internal coordinates. Ultimately, the Nomodeco toolkit presented here generates internal coordinate sets to find an optimal set for representing molecular vibrations. The resulting contribution tables can be used to clarify vibrational notations. We test our scheme on small to mid-sized molecules, showing how the space of definable internal coordinate sets can significantly be reduced.

Funder

Austrian Science Fund

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3