Design, modeling, and control of a long stroke compliant tip-tilt-piston micropositioning stage driven by voice coil motors

Author:

Li Peixing1,Chen Yunzhuang1,Xie Chao1,Xu Zhihao1,Lai Leijie1ORCID,Zhu Limin2

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science 1 , Shanghai 201620, China

2. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University 2 , Shanghai 200240, China

Abstract

In this paper, a long-stroke parallel compliant tip-tilt-piston micropositioning stage driven by voice coil motors (VCMs) is proposed. The stage is equipped with three sets of driving arms, which include a spherical hinge, VCM, and parallelogram guide mechanism, evenly spaced at 120° intervals. The spherical hinge is composed of orthogonal leaf-spring beams, and the VCM is embedded into the parallelogram mechanism to form a compact design. The compliance matrix method and the geometric method facilitated the determination of compliance in all six degree-of-freedom directions of the spherical hinge and the derivation of kinematic equations for decoupling the motion of the stage. In addition, finite element analysis was utilized to determine the maximum stroke and stress of the stage. To validate the proposed design, a stage prototype was constructed and subjected to experimental testing. Furthermore, a feedback controller was designed, integrating proportional integral controller, notch filter, and sliding mode controller feedforward. The experimental results indicate that the stage can achieve a long stroke of ±50.75 mrad × ±44.2 mrad × ±4.425 mm, with the natural frequencies in the three-axis direction of 22.3 × 25.5 × 25.5 Hz3. In addition, the maximum relative tracking error was maintained below 5.25%, highlighting the effectiveness of the control technique in achieving a high tracking performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

State Key Laboratory of Mechanical System and Vibration

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3