Enhanced and reduced solute transport and flow strength in salt finger convection in porous media

Author:

Abstract

We report a pore-scale numerical study of salt finger convection in porous media, with a focus on the influence of the porosity in the non-Darcy regime, which has received little attention in previous research. The numerical model is based on the lattice Boltzmann method with a multiple-relaxation-time scheme and employs an immersed boundary method to describe the fluid–solid interaction. The simulations are conducted in a two-dimensional, horizontally periodic domain with an aspect ratio of 4, and the porosity ϕ is varied from 0.7 to 1, while the solute Rayleigh number R a S ranges from 4 × 10 6 to 4 ×   10 9. Our results show that, for all explored R a S, solute transport first enhances unexpectedly with decreasing ϕ and then decreases when ϕ is smaller than a R a S-dependent value. On the other hand, while the flow strength decreases significantly as ϕ decreases at low R a S, it varies weakly with decreasing ϕ at high R a S and even increases counterintuitively for some porosities at moderate R a S. Detailed analysis of the salinity and velocity fields reveals that the fingered structures are blocked by the porous structure and can even be destroyed when their widths are larger than the pore scale, but become more ordered and coherent with the presence of porous media. This combination of opposing effects explains the complex porosity dependencies of solute transport and flow strength. The influence of porous structure arrangement is also examined, with stronger effects observed for smaller ϕ and higher R a S. These findings have important implications for passive control of mass/solute transport in engineering applications.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Guangdong Province of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3