Affiliation:
1. Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain
2. SITAEL S.p.A., Via A. Gherardesca 5, 56121 Pisa, Italy
Abstract
Numerical simulations of a magnetically shielded Hall effect thruster with a centrally mounted cathode are performed with an axisymmetric hybrid particle-in-cell/fluid code and are partially validated with experimental data. A full description of the plasma discharge inside the thruster chamber and in the near plume is presented and discussed, with the aim of highlighting those features most dependent on the magnetic configuration and the central cathode. Compared to traditional magnetic configurations, the acceleration region is mainly outside the thruster, whereas high plasma densities and low temperatures are found inside the thruster. Thus, magnetic shielding does not decrease plasma currents to the walls, but reduces significantly the energy fluxes, yielding low heat loads and practically no wall erosion. The injection of neutrals at the central cathode generates a secondary plasma plume that merges with the main one and facilitates much the drift of electrons toward the chamber. Once inside, the magnetic topology is efficient in channeling electron current away from lateral walls. Current and power balances are analyzed to assess performances in detail.
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献