A new method for measuring magnetorheological fluid redispersibility by testing yield stresses of sediments at different depths

Author:

Lv JingchengORCID,Wang Shiwei,Li YaoORCID,Wu Mingyu,He Junxiang,Zhao TongORCID,Wei YintaoORCID

Abstract

Magnetorheological fluid (MRF) is a widely used smart material that suffers from sedimentation. Since sedimentation is unavoidable, it is crucial to study and improve the redispersibility of MRFs. However, previous redispersibility testing methods have problems, such as complicated operation and low precision. Simultaneously, a simple and effective method is urgently needed for high-precision modeling of MRF sedimentation to test the rheological properties of settled MRFs at different depths. After systematically analyzing the redispersion problem, this paper proposes decoupling the energy required for redispersing settled MRFs into two parts, which are related to different factors. These two parts are the energy required to separate the agglomerated particles (related to the MRF formula) and that to redisperse the settled MRF uniformly vertically against gravity (related to the solid concentration and packing limit). The energy that separates the agglomerated particles is proportional to the shear stress of slowly shearing the corresponding agglomerated samples, i.e., the yield stress. Thus, this paper proposes a simple microdamage quasi-static indentation method to measure the yield stresses of settled MRFs at different depths to characterize the redispersibility of the corresponding MRFs. Herein, this method is applied to study the mechanisms of the influences of surfactants, thixotropic agents, and their networks on the redispersibility of MRFs. The results indicate that a well-dispersed plate-like thixotropic agent network can effectively improve redispersibility, while surfactants with poor compatibility degrade redispersibility. In summary, this redispersibility test method will greatly facilitate studies of MRFs, such as optimizing the formulas and establishing sedimentation models.

Funder

National Natural Science Foundation of China

State Key Laboratory of Vehicle NVH and Safety Technology

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3