Effect of a textured surface on the occurrence and development of cavitation on the hydrofoil

Author:

Skripkin Sergey G.12ORCID,Starinskiy Sergey V.1ORCID,Tsoy Mikhail A.1ORCID,Vasiliev Mikhail M.2ORCID,Kravtsova Aleksandra Yu.12ORCID

Affiliation:

1. Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences 1 , Novosibirsk 630090, Russia

2. Novosibirsk State University 2 , Novosibirsk 630090, Russia

Abstract

An experimental study of the cavitation flow around the National Advisory Committee for Aeronautics 0012 hydrofoil with different surface morphology was carried out in this work. The surface morphology was set by modern laser ablation technology. The average values and intensity of vapor–gas cavities were determined. It has been revealed that laser texturing delays the emerging cavitation and somewhat decreases its intensity at higher cavitation numbers. A decrease in the cavitation number leads to an increase in its intensity for a smooth hydrofoil in comparison with a rough one, which is also expressed in an increase in the frequency of cavities. The paper presents a comparison of the flow regime with equal cavitation numbers, which clearly describes the features of the development of a vapor–gas cavity on the suction side of the foil with different surface morphologies. The paper provides an explanation of the reasons for the influence of surface morphology on the development of cavities.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3