Theoretical analysis of the long-distance limit of NMR chemical shieldings

Author:

Lang Lucas12ORCID,Ravera Enrico34ORCID,Parigi Giacomo34ORCID,Luchinat Claudio34ORCID,Neese Frank1ORCID

Affiliation:

1. Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

2. Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway

3. Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy

4. Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino 50019, Italy

Abstract

After some years of controversy, it was recently demonstrated how to obtain the correct long-distance limit [point-dipole approximation (PDA)] of pseudo-contact nuclear magnetic resonance chemical shifts from rigorous first-principles quantum mechanics [Lang et al., J. Phys. Chem. Lett. 11, 8735 (2020)]. This result confirmed the classical Kurland–McGarvey theory. In the present contribution, we elaborate on these results. In particular, we provide a detailed derivation of the PDA both from the Van den Heuvel–Soncini equation for the chemical shielding tensor and from a spin Hamiltonian approximation. Furthermore, we discuss in detail the PDA within the approximate density functional theory and Hartree–Fock theories. In our previous work, we assumed a relatively crude effective nuclear charge approximation for the spin–orbit coupling operator. Here, we overcome this assumption by demonstrating that the derivation is also possible within the fully relativistic Dirac equation and even without the assumption of a specific form for the Hamiltonian. Crucial ingredients for the general derivation are a Hamiltonian that respects gauge invariance, the multipolar gauge, and functional derivatives of the Hamiltonian, where it is possible to identify the first functional derivative with the electron number current density operator. The present work forms an important foundation for future extensions of the Kurland–McGarvey theory beyond the PDA, including induced magnetic quadrupole and higher moments to describe the magnetic hyperfine field.

Funder

Max-Planck-Gesellschaft

Fondazione Cassa di Risparmio di Firenze

Ministero della Salute

Ministero dell’Istruzione, dell’Università e della Ricerca

European Commission

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3