Effect of rotating magnetic field on the stability of thermocapillary flow in a gallium arsenide liquid bridge between unequal ends

Author:

Abstract

In this study, we investigated the impact of a rotating magnetic field on the stability of a thermocapillary flow in a gallium arsenide liquid bridge (Prandtl number Pr = 0.068) situated between two unequal disks, considering two different scenarios with radius ratios of Γr = 0.98 and Γr = 0.60 for the upper heated disk. By utilizing linear stability analysis based on the Legendre spectral element method, we first identified the critical parameters of the onset of flow instability, including critical Marangoni number (Mac), dimensionless oscillation frequency (fc), and azimuthal wavenumber (m). Then, we employed kinetic energy budget analysis to uncover the underlying instability mechanism. For radius ratio Γr = 0.98, three transitions between axisymmetric steady flow and three-dimensional oscillatory flow in the narrow range of Taylor number Ta (8700≤Ta ≤ 9500) are observed; these transitions arise due to the interplay between the flow induced by rotating magnetic field and thermocapillary flow. For the Γr = 0.60 scenario, the rotating magnetic field is observed to significantly enhance the flow stability. Additionally, our analysis identifies four instability types dominated by the hydrodynamic mechanism. In the meantime, the thermocapillary mechanism also contributes to flow instability in the specific region of Taylor number Ta (1250≤Ta ≤ 8000) for radius ratio Γr = 0.98.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Chongqing doctoral through train scientific research project

Natural Science Foundation of Chongqing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3