Air/water interfacial waves with a droplet at the tip of their crest

Author:

Nie B. C.12ORCID,Guan X.3ORCID,Vanden-Broeck J.-M.3ORCID,Dias F.24ORCID

Affiliation:

1. School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

2. School of Mathematics and Statistics, University College Dublin, Dublin, Ireland

3. Department of Mathematics, University College London, London WC1E 6BT, United Kingdom

4. Centre Borelli, ENS Paris-Saclay, Gif-sur-Yvette 91190, France

Abstract

In nature, it is common to observe water wave crests with a droplet at their tip. This fascinating configuration remains unexplained from the physical point of view. The present study explores such a unique local configuration numerically. Solitary waves that propagate at the interface between two layers of irrotational fluids are considered. Extending the work of Guan et al. [“A local model for the limiting configuration of interfacial solitary waves,” J. Fluid Mech. 921, A9 (2021)], the density ratio has been decreased to a very small value equal to 0.001, which is close to the air/water density ratio at sea level (0.0013). A highly accurate solution for the limiting configuration of solitary waves is obtained by solving the irrotational Euler equations using the boundary integral method and Newton's iterations. It is confirmed that the limiting configuration consisting of a droplet sitting on a crest with a [Formula: see text] angle exists for very small density ratios. This limiting configuration obviously does not exist for surface waves with a void on the top, thus stressing the crucial role played by the air. The droplet is stationary in a frame of reference moving with the wave and experiences intense shear at its tip. From the energy point of view, the formation of a crest with a droplet is accompanied by a remarkable drop of kinetic and potential energies of water in the vicinity of the crest. Furthermore, we present a simple set of scaling relations for the fall of the droplet.

Funder

National Natural Science Foundation of China

European Research Council

Chinese Government Scholarship

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3