Quantum computing and materials science: A practical guide to applying quantum annealing to the configurational analysis of materials

Author:

Camino B.1ORCID,Buckeridge J.2ORCID,Warburton P. A.34ORCID,Kendon V.5ORCID,Woodley S. M.1ORCID

Affiliation:

1. Department of Chemistry, University College London 1 , London WC1H 0AJ, United Kingdom

2. School of Engineering, London South Bank University 2 , SE10 AA London, United Kingdom

3. London Centre for Nanotechnology, University College London 3 , WC1H 0AH London, United Kingdom

4. Department of Electronic & Electrical Engineering, University College London 4 , WC1E 7JE London, United Kingdom

5. Department of Physics, University of Strathclyde 5 , G4 0NG Glasgow, United Kingdom

Abstract

Using quantum computers for computational chemistry and materials science will enable us to tackle problems that are intractable on classical computers. In this paper, we show how the relative energy of defective graphene structures can be calculated by using a quantum annealer. This simple system is used to guide the reader through the steps needed to translate a chemical structure (a set of atoms) and energy model to a representation that can be implemented on quantum annealers (a set of qubits). We discuss in detail how different energy contributions can be included in the model and what their effect is on the final result. The code used to run the simulation on D-Wave quantum annealers is made available as a Jupyter Notebook. This Tutorial was designed to be a quick-start guide for the computational chemists interested in running their first quantum annealing simulations. The methodology outlined in this paper represents the foundation for simulating more complex systems, such as solid solutions and disordered systems.

Funder

UK Research and Innovation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3