Affiliation:
1. Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University , Jinan 250061, China
Abstract
In this paper, a robust composite control strategy in the framework of unified infinite-dimensional H∞ optimal control is developed to support nano-scale periodic tracking with improved non-harmonic disturbance attenuation of piezo-actuated nano-stages with sensor-induced measurement delays. In particular, we analyze the electromechanical coupled dynamics and derive a multi-perturbation model, where an extended Youla–Kucera parameterization-based repetitive controller with a disturbance observer is constructed to optimize control performances on high-precision tracking and perturbation rejection. The controller parameters are solved by using a unified infinite-dimensional H∞ optimization method. Comprehensive experiments on a piezo-actuated stage are conducted, where comparative results with representative methods, such as the conventional repetitive control and proportional-integral-derivative control, demonstrate significant performance improvements in hysteresis compensation, trajectory tracking, and disturbance suppression of the proposed method.
Funder
Major Basic Research Program of the Natural Science Foundation of Shandong Province