A present scenario of the computational approaches for ternary organic solar cells

Author:

Eraso Oscar1ORCID,Bolaños Daniela2ORCID,Echeverri Nikolas3ORCID,Orozco Donneys Carolina4ORCID,Ameri Tayebeh56ORCID,Perea Jose Dario4ORCID

Affiliation:

1. Georgia Institute of Technology, Materials Science and Engineering 1 , Atlanta, Georgia 30332, USA

2. Department of Physics, Technical University of Munich 2 , Munich 80333, Germany

3. Departamento de Física, Universidad del Valle 3 , Cali 76001, Colombia

4. Departamento de Ingeniería Bioquímica, Universidad Icesi 4 , Cali 76001, Colombia

5. Chair for Composite, Materials, Faculty of Engineering, Kiel University 5 , Kiel 24143, Germany

6. School of Engineering, University of Edinburgh 6 , Edinburgh EH10 5HF, United Kingdom

Abstract

Computer science implements algorithms and techniques to automate problem-solving solutions. Due to the chemical versatility of organic building blocks, many organic semiconductors have been utilized for organic solar cells (OSCs). The computational methods can potentially drive experimentalists to discover and design high-performance materials. OSCs' objective is the performance of their energy conversion efficiency and stability. One idea that has improved efficiency and stability is that of ternary systems, known as ternary organic solar cells (TOSCs). The photoactive layer in TOSCs is formed by mixing three distinct components together. This review is about the employment of computational approaches for investigating TOSCs. Here, we outlined the basics of computational methods and standard application procedures. This article offers a concise overview of various computational algorithms, relevant software, and tools. Additionally, it examines the present state of research regarding computations in TOSCs. The challenges associated with TOSCs, including intricacy metrics, diverse chemical structures, and programming skills, are discussed. Furthermore, we suggest some ways to improve the utility of computation in TOSCs research enterprises.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3