Adenine’s band strength at cryogenic temperatures

Author:

Rego V. P.1ORCID,Oliveira P. R. B.1ORCID,da Silveira E. F.1ORCID

Affiliation:

1. Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro , 22451- 900, Rio de Janeiro, Brazil

Abstract

Infrared observations of the interstellar medium have unveiled the existence of numerous solid-phase molecules. The recent detection of uracil within the (162173) Ryugu asteroid has opened new prospects for the discovery of additional compounds, including nitrogenous bases, in the near future. To facilitate the comprehension, identification, and observation of these substances within astrophysical environments, precise measurements of their infrared band strengths are crucial. In this study, we present the outcomes of laboratory experiments conducted to investigate the behavior of adenine at various temperatures. The measured band strength from 3600 to 1970 cm−1 was determined to be 3.21⋅10−16 cm molecule−1. Additionally, as the temperature decreased, its behavior exhibited a well-fitted second-degree polynomial function. Notably, the experiments indicated no permanent phase changes or hysteresis during the cool-down and warm-up processes, further elucidating the thermal properties of adenine.

Publisher

AIP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3