Revealing the temperature-driven Lifshitz transition in p-type Mg3Sb2-based thermoelectric materials

Author:

Xie Sen12,Liu Keke1,Li Chunxia12,Yan Fan1,Ouyang Yujie12,Ge Haoran1,Li Xianda12,Su Xianli1ORCID,Liu Yong3ORCID,Liu Wei1ORCID,Tang Xinfeng1ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 1 , Wuhan 430070, People's Republic of China

2. International School of Materials Science and Engineering, Wuhan University of Technology 2 , Wuhan 430070, People's Republic of China

3. School of Physics and Technology and The Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University 3 , Wuhan 430072, China

Abstract

The manipulation of native atomic defects and their thermal excitations plays vital roles in the thermoelectric performance of Mg3Sb2-based materials. While native defects manipulation has been intensively studied in p-type Mg3Sb2, there exists interesting unsolved issue regarding the abnormal semiconducting electrical behavior in most of samples. In this work, high quality Mg3Sb2 and Mg3Bi2 (00l) films are fabricated by molecular beam epitaxy technique, while variable temperature angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy measurements are utilized for resolving the aforementioned issue. The thermal excitation of Mg interstitials (the electron donor) results in an obvious downshift of valence bands with rising temperature in both the p-type Mg3Sb2 and Mg3Bi2. Meanwhile, the interesting temperature-driven Lifshitz transition is discovered in the p-type Mg3Sb2, as indicated by the change of Fermi surface topology. Above the Lifshitz transition temperature, the Fermi level of p-type Mg3Sb2 will enter the bandgap, which leads to the abnormal semiconducting electrical behavior. This work discloses the excitation of native defects and temperature-driven Lifshitz transition, which are the main causes for the anomalies in electrical transport of p-type Mg3Sb2-based materials, and also provides valuable insights for further improving their thermoelectric performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National College Students Innovation and Entrepreneurship Training Program

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3