Extension of selected configuration interaction for transcorrelated methods

Author:

Ammar Abdallah1,Scemama Anthony1ORCID,Giner Emmanuel2ORCID

Affiliation:

1. Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université de Toulouse, CNRS, UPS, France

2. Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France

Abstract

In this work, we present an extension of popular selected configuration interaction (SCI) algorithms to the Transcorrelated (TC) framework. Although we used in this work the recently introduced one-parameter correlation factor [E. Giner, J. Chem. Phys. 154, 084119 (2021)], the theory presented here is valid for any correlation factor. Thanks to the formalization of the non-Hermitian TC eigenvalue problem as a search of stationary points for a specific functional depending on both left- and right-functions, we obtain a general framework, allowing for different choices for both the selection criterion in SCI and the second order perturbative correction to the energy. After numerical investigations on different second-row atomic and molecular systems in increasingly large basis sets, we found that taking into account the non-Hermitian character of the TC Hamiltonian in the selection criterion is mandatory to obtain a fast convergence of the TC energy. In addition, selection criteria based on either the first order coefficient or the second order energy lead to significantly different convergence rates, which is typically not the case in the usual Hermitian SCI. Regarding the convergence of the total second order perturbation energy, we find that the quality of the left-function used in the equations strongly affects the quality of the results. Within the near-optimal algorithm proposed here, we find that the SCI expansion in the TC framework converges faster than the usual SCI in terms of both the basis set and the number of Slater determinants.

Funder

Horizon 2020 Framework Program

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3