Effect of the shear rate and residence time on the lysis of AC16 human cardiomyocyte cells via surface acoustic waves

Author:

Almanza G.1ORCID,Trujillo R. M.1ORCID,Sanchez-Saldaña D.1ORCID,Rosand Ø.2ORCID,Høydal M.2ORCID,Fernandino M.1ORCID,Dorao C. A.1ORCID

Affiliation:

1. Department of Energy and Process Engineering, Norwegian University of Science and Technology 1 , Trondheim, Norway

2. Department of Circulation and Medical Imaging, Norwegian University of Science and Technology 2 , Trondheim, Norway

Abstract

The efficient breakage of one cell or a concentration of cells for releasing intracellular material such as DNA, without damaging it, is the first step for several diagnostics or treatment processes. As the cell membrane is easy to bend but resistant to stretching, the exposure of the cell to a shear rate during a short period of time can be sufficient to damage the membrane and facilitate the extraction of DNA. However, how to induce high shear stresses on cells in small microliter volumes samples has remained an elusive problem. Surface acoustic waves operating at high frequencies can induce acoustic streaming leading to shear rates sufficient to cell lysis. Lysis induced by acoustic streaming in sessile droplets has been investigated in the past from the lysis efficiency point of view. However, the effects of the velocity field and shear rate induced by acoustic streaming on the lysis process remain unexplored. Here, we study the lysis of AC16 human cardiomyocytes in microliter droplets under the effect of the shear rate induced by acoustic streaming. It is identified that for a given shear rate, the extracted DNA is also affected by the actuation period which can be attributed to a cycling process that leads to an accumulation of damage on the cell membrane.

Funder

Research Council of Norway

NTNU-Helse

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3