On the hysteresis characteristics and compensation control strategy of a pneumatic hydrodynamic retarder

Author:

Wei WeiORCID,Tao TianlangORCID,Jian HongchaoORCID,Guo MengORCID,Hu Naipeng,Yan QingdongORCID

Abstract

As the core component of the hydrodynamic retarder braking system, pneumatic proportional solenoid valve plays an important role in the process of braking torque control. However, the hysteresis characteristic caused by friction and air compressibility will lead to the deviation of braking torque. In order to solve this problem, the hysteresis characteristic of pneumatic proportional solenoid valve is experimentally studied, and the causes of hysteresis phenomenon are analyzed through mathematical modeling of the valve core. Then, a high-precision prediction model of braking torque is obtained by combining Computational Fluid Dynamics (CFD) and response surface method, which is used to construct the mapping relationship between control air pressure and braking torque. Furthermore, a feedforward controller based on Prandtl–Ishlinskii inverse model is designed to compensate the hysteresis characteristics. On this basis, a compound hysteresis characteristics compensation control strategy combined with Proportional Integral Derivative (PID) feedback control is proposed to realize the accurate control of braking torque. Finally, the test verification of braking torque control is carried out. The average error of compound control, feedforward control, and PID control under torque step working condition is 3.16%, 5.97%, and 6.23%, and the response time is 3.75, 8.75, and 3.2 s, respectively. The compound control strategy also has smaller torque error and shorter response time under both ramp torque tracking and constant torque conditions. To sum up, this compound control strategy can effectively compensate the hysteresis characteristics of the pneumatic hydrodynamic retarder and ensure the driving safety by improving the control accuracy and response speed of braking torque.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3