NASICON-based all-solid-state Na–ion batteries: A perspective on manufacturing via tape-casting process

Author:

Hasegawa George1ORCID,Hayashi Katsuro2ORCID

Affiliation:

1. Institute of Materials and Systems for Sustainability, Nagoya University 1 , Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

2. Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 2 , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

On the background of the urgent demand to realize a decarbonized society, energy storage technology plays a key role in shifting from social activities founded on the combustion of fossil fuels to those based on renewable energy resources. Toward this end, global deployment of large-scale rechargeable batteries supplying electricity to power grids is imperative, which requires widespread commercialization of high-performance and safe batteries at a low price relying on abundant and ubiquitous source materials and a cost-efficient manufacturing process. Along this line, the trend of the battery research field is currently located at a turning point: “from Li–ion to Na–ion” and “from liquid to solid electrolyte.” From the viewpoints of the distinguished oxide solid electrolyte, Na superionic conductor (NASICON), and the long-standing progress in ceramic processing, Na–ion all-solid-state batteries (Na-ASSBs) based on NASICON and its derivatives show great promise to realize an innovative and sustainable society in the future. At this moment, however, Na-ASSBs face multifaceted and formidable challenges to overcome for practical usage, mostly relating to interfacial matters in terms of interparticle and interlayer contacts. Here, we overview the recent research progress in NASICON-based solid electrolytes (SEs) from the aspects of synthetic techniques and sintering aids, particularly focusing on the tape-casting process and glass additive. We also provide insights into how to prepare electrode layers and incorporate them with an SE layer into an ASSB cell via tape casting, with the prospect of a high-capacity multilayer-stacked ASSB analogous to the multilayer ceramic capacitors (MLCCs). In addition, the feasibility of a Na metal anode in conjunction with the NASICON-type SEs and the tape-casting process toward an MLCC-type cell configuration is discussed. In the last section, we propose our ideas about future research directions in relevant fields to achieve a breakthrough for Na-ASSBs based on NASICON.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

AIP Publishing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3