Analytical solutions for resonant radiation performance of bending-mode magnetoelectric antennas

Author:

Lei Baoxin12ORCID,You Zhixiong12,Shi Yang12ORCID

Affiliation:

1. Research Center for Applied Mechanics, School of Mechano-Electronic Engineering, Xidian University 1 , Xi’an 710071, Shaanxi, China

2. Shaanxi Key Laboratory of Space Extreme Detection 2 , Xi’an 710071, Shaanxi, China

Abstract

This paper proposes analytical solutions for the resonant radiation performance of bending-mode magnetoelectric (ME) antennas. The strain-mediated Converse ME (CME) coupling model of bending-mode ME antennas is first established by solving nonlinear constitutive equations and bending governing equations using the elastic mechanics method. Then, the calculated magnetic flux and electric displacement are employed to propose a resonant radiation field model based on the dipole method. The numerical results for the CME coefficient show a good agreement with the experimental data. It can be observed that the volume fraction ratio of the piezoelectric layer can control the CME coefficient and radiation efficiency with the same variation trend since it can determine the bending strain via changing the location of the neutral layer of the ME antennas, which also demonstrates the strain-mediated essence of the ME antennas. In addition, the volume fraction ratio can tune the resonant frequency within a wide range. The gain of the ME antenna is stable and higher than −168 dB with the volume fraction ratio ranging from 0.2 to 0.7. The tensile stress and compressive stress have the opposite effect on the resonant frequency at low and high bias magnetic fields. Meanwhile, the tensile (compressive) stress is beneficial for both the radiation and gain in the low (high) bias field region. This model may facilitate the understanding of the bending-mode radiation mechanism of ME antennas and provide a basis for designing asymmetric ME antennas.

Funder

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities

Innovation Fund of Xidian University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3