Effect of magnetron sputtering process parameters on the conductivity of thin metal film

Author:

Liu Shuangjie1,Li Xingwang1ORCID,Hao Yongping1ORCID,Li Xing1ORCID,Liu Fengli2ORCID

Affiliation:

1. School of Equipment Engineering, Shenyang Ligong University 1 , Shenyang, China

2. School of Mechanical Engineering, Shenyang Ligong University 2 , Shenyang, China

Abstract

This paper focuses on the effect of magnetron sputtering process parameters on the performance of thin metal film. Copper–tin alloy metal film was deposited on both sides of the PVDF film using direct current magnetron sputtering technology, and the effects of different working pressures, sputtering powers, sputtering times, and argon flow rates on the uniformity, deposition rate, and electrical conductivity of the metal film were studied separately. The main and minor factors affecting the conductivity of the metal film were determined by multiple linear regression, and the process parameters were optimized. The optimal process parameters include a working pressure of 0.065 Pa, a sputtering power of 70 W, a sputtering time of 20 min, and an argon flow of 20 SCCM. The samples with the best electrical conductivity were analyzed by scanning electron microscopy and energy spectrometry for microscopic morphology and elemental composition. The experimental results showed that the sputtering time and sputtering power have a greater effect on the metal film uniformity and that the working pressure and argon flow rate have a smaller effect on the metal film uniformity; when the working pressure is lower, the sputtering power is higher, the sputtering time is longer, the argon flow rate is higher, and the conductivity of the sputtered metal film is better. The deposition rate decreased with the increase in the working pressure and increased with the increase in the sputtering power and argon flow rate. The working pressure is the main factor affecting the conductivity of the metal film, and the sputtering power and sputtering time are secondary factors.

Funder

Department of Education of Liaoning Province

Shenyang Ligong University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference23 articles.

1. Application and development of supercapacitors;Power Equip.,2008

2. Recent advancements in supercapacitor technology;Nano Energy,2018

3. Advances in supercapacitor and supercapattery-innovations in energy storage;IEEE Electr. Insul. Mag.,2022

4. Efficient lightweight supercapacitor with compression stability;Adv. Funct. Mater.,2016

5. Conducting polymer-based flexible supercapacitor;Energy Sci. Eng.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3