The impact of positive and negative information on SIR-like epidemics in delayed multiplex networks

Author:

Wu Xifen1,Bao Haibo1ORCID

Affiliation:

1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Abstract

In order to better study the interaction between epidemic propagation and information diffusion, a new coupling model on multiplex networks with time delay is put forward in this paper. One layer represents the information diffusion about epidemics. There is not only information about the positive prevention of infectious diseases but also negative preventive information. Meanwhile, the dissemination of information at this layer will be influenced by the mass media, which can convey positive and reliable preventive measures to help the public avoid exposure to contagion. The other layer represents the transmission of infectious diseases, and the public in this layer no longer only exchange information related to infectious diseases in the virtual social network like the information layer but spread infectious diseases through contact among people. The classical SIR model is used to model for epidemic propagation. Since each infected individual needs to spend enough time to recover, the infected one at one time does not necessarily change to the recovered one at the next time, so time delay is an essential factor to be considered in the model. Based on the microscopic Markov chain approach, this paper obtains an explicit expression for epidemic threshold in the two-layered multiplex networks with time delay, which reveals some main factors affecting epidemic threshold. In particular, the time delay has a noticeable effect on the epidemic threshold to some extent. Finally, the influence of these main factors on the epidemic threshold and their interaction are proved through numerical simulations.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3