Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network

Author:

Rankine C. D.1ORCID,Penfold T. J.1ORCID

Affiliation:

1. Chemistry–School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom

Abstract

The affordable, accurate, and generalizable prediction of spectroscopic observables plays a key role in the analysis of increasingly complex experiments. In this article, we develop and deploy a deep neural network—XANESNET—for predicting the lineshape of first-row transition metal K-edge x-ray absorption near-edge structure (XANES) spectra. XANESNET predicts the spectral intensities using only information about the local coordination geometry of the transition metal complexes encoded in a feature vector of weighted atom-centered symmetry functions. We address in detail the calibration of the feature vector for the particularities of the problem at hand, and we explore the individual feature importance to reveal the physical insight that XANESNET obtains at the Fe K-edge. XANESNET relies on only a few judiciously selected features—radial information on the first and second coordination shells suffices along with angular information sufficient to separate satisfactorily key coordination geometries. The feature importance is found to reflect the XANES spectral window under consideration and is consistent with the expected underlying physics. We subsequently apply XANESNET at nine first-row transition metal (Ti–Zn) K-edges. It can be optimized in as little as a minute, predicts instantaneously, and provides K-edge XANES spectra with an average accuracy of ∼±2%–4% in which the positions of prominent peaks are matched with a [Formula: see text]% hit rate to sub-eV (∼0.8 eV) error.

Funder

EPSRC

Leverhulme Trust

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3