Investigation on the effect of particle parameters on the erosion and erosion prediction model of the Pelton turbine

Author:

Han LeiORCID,Guo ChuanliangORCID,Gao YujieORCID,Li DeyouORCID,Wang HongjieORCID,Liu Yongxin,Iranzo Alfredo1ORCID,Qin Daqing

Affiliation:

1. Thermal Engineering Group, School of Engineering, University of Sevilla 3 , Sevilla 41092, Spain

Abstract

The Pelton turbine will play a massive role in China's water conservancy and power generation development process. In practical engineering applications, sediment will erode the components of the Pelton turbine when they come into contact, threatening the safe and stable operation of the unit. Therefore, based on the Eulerian–Lagrangian method, this study analyzes the effects of particle size, concentration, and position angle on the degree and distribution of erosion of each component without considering the cavitation effect of the flow. The results show that the larger the particle size, the more concentrated the distribution, and the more severe the abrasion caused on the spray needle and water bucket. However, the degree of nozzle erosion weakens, and the erosion area increases. It was also found that the higher the concentration, the more severe the abrasion caused to each component. When the jet completely hits the position on the bucket, due to the low impact speed, the impact angle remains almost unchanged, resulting in less erosion. Finally, the classic Finnie model was refined by adjusting the average erosion rate, particle size, concentration, and rotation angle. This modification yielded an enhanced model, mainly showcasing improved performance for moderate particle sizes.

Funder

Natural Science Foundation of Heilongjiang Province

Foundation of State Key Laboratory of Hydro-power Equipment

Central Guidance for Local Project Topic

National Key Research and Development Program of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3