Ultra-low threshold pH sensor based on a whispering gallery mode microbubble resonator

Author:

Cao Yue12ORCID,Dai Jin12ORCID,Peng Xu-Biao12ORCID,Ma Ji-Yang12ORCID,Zhao Qing12ORCID

Affiliation:

1. Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology 1 , Beijing 100081, China

2. Beijing Academy of Quantum Information Sciences 2 , Beijing 100193, China

Abstract

Laser sensing has a wide range of applications. In this paper, we propose a pH sensing laser with an ultra-low threshold and low sample consumption based on a whispering-gallery-mode microbubble resonator. Rhodamine 6G aqueous solutions with different pH values are injected through microfluidic channels as the lasing gain media and interact with a high-quality factor microbubble cavity with a sample consumption of only 550 pL to achieve lasing. Subtle pH changes of the aqueous solution lead to changes in lasing intensity in real time, and the threshold reaches a minimum of 0.091 μ J/mm2. The low pump energy density effectively avoids the self-aggregation and photobleaching effects of dye molecules present in high-concentration rhodamine 6G solutions. The lasing characteristics under different pH conditions were determined experimentally and theoretically, and the results are in good agreement. Due to the deprotonation of amino groups in highly alkaline environments, the lasing threshold is highly dependent on the pH of rhodamine 6G aqueous solutions. In the pH range of 10.16–13.14, the lasing intensity changes considerably with the increasing pH. The proposed pH-sensing laser exhibits a fast response time, low toxicity, and a high signal-to-noise ratio, making it promising for highly sensitive alkaline detection in biological applications.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3