A numerical study of natural convection through a vertical heated channel with a confined circular cylinder

Author:

Nguyen Quang DuyORCID,Ji SiyuORCID,Lei ChengwangORCID

Abstract

This study examines thermal flow structures and heat transfer through a vertical heated channel with an adiabatic circular cylinder symmetrically positioned between lateral walls. A two-dimensional numerical simulation is conducted covering a range of parameters including Rayleigh numbers Ra = 8.9 × 106–8.9 × 108, cylinder positions relative to the channel height h = 0–0.50, and blockage ratios (the ratio of cylinder diameter to channel width) β = 0.25–0.75. Three distinct flow regimes are observed at different Rayleigh numbers and blockage ratios, including steady symmetric, unsteady periodic, and unsteady asymmetric flow regimes. The steady symmetric and unsteady periodic flows are observed at all blockage ratios, while the unsteady asymmetric flow is only observed at the highest blockage ratio of β = 0.75 for Rayleigh numbers above 8.9 × 107. It is found that the presence of the cylinder significantly enhances mixing and turbulence in the channel, which in turn enhances heat transfer through the channel. A 64.3% enhancement of heat transfer is achieved at β = 0.50 and h = 0.05 for Ra = 8.9 × 108.

Funder

Australian Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3