Evolution of the cavity in a particle dispersion triggered by laser-induced breakdown

Author:

Han Kyuho1ORCID,Oh Sungkyun1,Do Hyungrok1,Hwang Wontae1ORCID

Affiliation:

1. Department of Mechanical Engineering, Seoul National University, Seoul 08826, South Korea

Abstract

Focusing a laser beam to a spot within a particle-laden air flow can cause laser-induced breakdown, which generates a spherically expanding shockwave and ensuing hot gas vortex (HGV). This can cause an initially uniform spatial distribution of static particles to be scattered non-homogeneously, creating a particle void region (or cavity). High-speed schlieren imaging has been applied to investigate the propagation of this shockwave and deformation of the HGV. Evolution of the particle distribution has been captured by a high-speed camera. It has been found that the cavity evolves over three temporal phases: expansion, distortion, and separation. The cavity is first created as the shockwave expels the particles in the radial direction. Next, the cavity is distorted by the HGV and then separates into smaller cavities before finally disappearing due to mixing from the HGV. The temporal and spatial characteristics of the cavity and the mechanism by which it changes in each phase are discussed. Experiments were conducted at three different breakdown energies of 15, 49, and 103 mJ. Propagation speed of the shockwave and the size and strength of the HGV are found to be the main factors controlling this phenomenon.

Funder

Ministry of Science and ICT, South Korea

Ministry of Education

Institute of Engineering Research, Seoul National University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3