Theory for constructing effective electronic models of bilayer graphene systems

Author:

Minh Lam H.12ORCID,Nam Do V.12ORCID

Affiliation:

1. Department of Basic Science, Phenikaa Institute for Advanced Studies (PIAS) , A1 Building, , Hanoi 10000, Vietnam

2. Phenikaa University , A1 Building, , Hanoi 10000, Vietnam

Abstract

We present and discuss practical techniques for formulating effective models to describe the low-energy electronic properties of bilayer graphene systems. We show that such effective models are constructed from a collection of appropriate single-layer Bloch states of two graphene layers. In general, the obtained effective models allow the construction of a so-called moiré band structure. However, it is not the result of an irreducible representation of a translation symmetry group of the bilayer lattices except for the commensurate bilayer configurations. We also point out that the commensurate bilayer configurations are classified into three categories depending on the divisibility of the difference between two commensurate integer indices by 3. The electronic band structure of three lattice configurations, one for each category, is shown. Especially by combining with a real-space calculation, we validate the working ability of constructed effective models for generic bilayer graphene systems by showing that the effects of interlayer sliding are diminished by twisting. This result is consistent with the invariance of effective models under the interlayer sliding operation.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3