Affiliation:
1. Department of Physics, University of Konstanz, 78464 Konstanz, Germany
Abstract
We use a degenerated Ising model to describe nucleation and crystallization from solution in a confined two-component system. The free energy is calculated using metadynamics simulation with coordination numbers as the reaction coordinates. We deploy nudged elastic band simulation to determine the minimum energy path and give properties of the crystallization path. In this confined system, depletion effects, which could also be caused by slow material transport in the solution, prevent the post-critical cluster from further growth, and the crystalline state would only be stable at larger cluster sizes. Fluctuation of the higher coupling strength of the crystalline state enables further growth until the crystalline cluster is in equilibrium with the solvent, and this way, a second barrier is crossed. From the parameters and setup, we find necessary conditions for the occurrence of two-step nucleation in our system. These findings can be adapted to real systems as biomineralization, colloidal crystallization, and the solidification of metals.
Funder
Deutsche Forschungsgemeinschaft
Neumann Institute for Computing
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献