Influence of friction on the packing efficiency and short-to-intermediate range structure of hard-sphere systems

Author:

Tang Jiajun1ORCID,Wen Xiaohui1ORCID,Zhang Zhen1ORCID,Wang Deyin12ORCID,Huang Xinbiao1ORCID,Wang Yujie134ORCID

Affiliation:

1. College of Mathematics and Physics, Chengdu University of Technology 1 , Chengdu 610059, China

2. School of Physics, Zhejiang University 2 , Hangzhou 310027, China

3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology 3 , Chengdu 610059, China

4. School of Physics and Astronomy, Shanghai Jiao Tong University 4 , Shanghai 200240, China

Abstract

Using particle-resolved computer simulations, we investigate the effect of friction on the packing structure of hard-sphere mixtures with two kinds of particles under external compression. We first show that increasing friction between the particles results in a more disordered and less efficient packing of the local structure on the nearest neighbor scale. It is also found that standard two-point correlation functions, i.e., radial distribution function and static structure factor, show basically no detectable changes beyond short-range distances upon varying inter-particle friction. Further analysis of the structure using a four-point correlation method reveals that these systems have on the intermediate-range scale a three-dimensional structure with an icosahedral/dodecahedral symmetry that exhibits a pronounced dependence on friction: small friction gives rise to an orientational order that extends to larger distances. Our results also demonstrate that composition plays a role in that the degree of structural order and the structural correlation length are mainly affected by the friction coefficients associated with the more abundant species.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3