Graphics processing unit/artificial neural network-accelerated large-eddy simulation of swirling premixed flames

Author:

Zhang MinORCID,Mao Runze,Li Han,An ZhenhuaORCID,Chen Zhi X.ORCID

Abstract

Within the scope of reacting flow simulations, the real-time direct integration (DI) of stiff ordinary differential equations for the computation of chemical kinetics stands as the primary demand on computational resources. Meanwhile, as the number of transport equations that need to be solved increases, the computational cost grows more substantially, particularly for those combustion models involving direct coupling of chemistry and flow such as the transported probability density function model. In the current study, an integrated graphics processing unit-artificial neural network (GPU-ANN) framework is introduced to comply with heavy computational costs while maintaining high fidelity. Within this framework, a GPU-based solver is employed to solve partial differential equations and compute thermal and transport properties, and an ANN is utilized to replace the calculation of reaction rates. Large eddy simulations of two swirling flames provide a robust validation, affirming and extending the GPU-ANN approach's applicability to challenging scenarios. The simulation results demonstrate a strong correlation in the macro flame structure and statistical characteristics between the GPU-ANN approach and the traditional central processing unit (CPU)-based solver with DI. This comparison indicates that the GPU-ANN approach is capable of attaining the same degree of precision as the conventional CPU-DI solver, even in more complex scenarios. In addition, the overall speed-up factor for the GPU-ANN approach is over two orders of magnitude. This study establishes the potential groundwork for widespread application of the proposed GPU-ANN approach in combustion simulations, addressing various and complex scenarios based on detailed chemistry, while significantly reducing computational costs.

Funder

National Natural Science Foundation of China

GHfund C

Emerging Engineering Interdisciplinary-Yong Scholars Project, Peking University

Fundamental Research ARCHER2 UK National Supercomputing Service

Royal Society

China Postdoctoral Science Foundation

CCF-Baidu Open Fund

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3