High-frequency traveling-wave phononic cavity with sub-micron wavelength

Author:

Xu Xin-Biao12ORCID,Wang Jia-Qi12ORCID,Yang Yuan-Hao12ORCID,Wang Weiting3,Zhang Yan-Lei12,Wang Bao-Zhen4,Dong Chun-Hua12,Sun Luyan3,Guo Guang-Can12,Zou Chang-Ling125ORCID

Affiliation:

1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China

2. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

3. Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

4. School of Civil Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China

5. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

Abstract

Thin-film gallium nitride (GaN) is a promising platform for phononic integrated circuits that hold great potential for scalable information processing processors. Here, an unsuspended traveling phononic resonator based on a high-acoustic-index-contrast mechanism is realized in GaN-on-Sapphire with a frequency up to 5 GHz, which matches the typical superconducting qubit frequency. A sixfold increment in quality factor is found when temperature decreases from room temperature ( Q =  5000) to [Formula: see text] ( Q =  30 000), and thus, a frequency-quality factor product of [Formula: see text] is obtained. Higher quality factors should be available when the fabrication process is further optimized. Our system shows great potential in hybrid quantum devices via the so-called circuit quantum acoustodynamics.

Funder

National Nature Scicence Foundation of China

China Postdoctoral Science Foundation

Key-Area Research and Development Program of Guangdong Provice

Nature Science Foundation of Anhui Provincial

Institute for Guo Qiang, Tsinghua University

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3