Abstract
We developed a dedicated, high-resolution skin-friction balance in a water tunnel to measure turbulent drag reduction over micro-grate-patterned superhydrophobic (SHPO) surfaces at the Reynolds number ReL ranging from 4.1 × 105 to 6.9 × 105 and achieved a significant drag reduction of up to 46%. The correlation between drag reduction and surface topology was investigated. By considering air fraction, micro-grate gap, and meniscus curvature, an empirical scaling for drag reduction was proposed, which reconciles the widely scattered drag reduction data in the literature. This scaling law could provide a valuable guidance on future design of effective SHPO surfaces for real-world applications. The scaling of the logarithmic layer was also analyzed under the condition that the outer layer has not fully adapted to the SHPO wall manipulation, a common occurrence in experiments due to the limited length of fabricated SHPO surfaces. The slope of the logarithmic layer was found to increase with the drag reduction. Moreover, a theoretical expression describing the slope and up-shifting level of the logarithmic profile was proposed. These results are insightful, providing a new perspective for researchers to examine their velocity profile and drag reduction data in turbulent boundary layers.
Funder
National Natural Science Foundation of China
Research Grants Council of Shenzhen Government
Research Grants Council, University Grants Committee