Clustering of chemically propelled nanomotors in chemically active environments

Author:

Khatri Narender1ORCID,Kapral Raymond1ORCID

Affiliation:

1. Chemical Physics Theory Group, Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada

Abstract

Synthetic nanomotors powered by chemical reactions have been designed to act as vehicles for active cargo transport, drug delivery, and a variety of other uses. Collections of such motors, acting in consort, can self-assemble to form swarms or clusters, providing opportunities for applications on various length scales. While such collective behavior has been studied when the motors move in a chemically inactive fluid environment, when the medium in which they move is a chemical network that supports complex spatial and temporal patterns, through simulation and theoretical analysis we show that collective behavior changes. Spatial patterns in the environment can guide and control motor collective states, and interactions of the motors with their environment can give rise to distinctive spatiotemporal motor patterns. The results are illustrated by studies of the motor dynamics in systems that support Turing patterns and spiral waves. This work is relevant for potential applications that involve many active nanomotors moving in complex chemical or biological environments.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3