Theoretical model on the slug/churn transition based on the generation and evolution of the huge waves

Author:

Abstract

Previous experimental studies have proved that the flooding of the falling film surrounding the Taylor bubble is attributed to the transition from the slug flow to the churn flow, which is related to the generation and evolution of huge waves. In the present study, theoretical models on the basis of the Kelvin–Helmholtz instability of the falling film around the Taylor bubble and kinematic analysis of the interfacial wave traveling on the falling film are, respectively, established to reveal the mechanism of the slug/churn transition. The formation of the liquid bridge or pseudo-liquid bridge is taken as the judgment basis to determine the transition. A term named “most dangerous wave” is introduced in the present study, and its criteria is related to the ratio of wave amplitude to pipe diameter. Verified by the data and models in the literature, the proposed model is demonstrated to have satisfactory predicting accuracy. In addition, parameters, including pipe diameter and system pressure, are analyzed in detail to discuss their effect on the slug/churn transition. The results indicate that the slug/churn boundaries move downward as the system pressure increases but upward with the increasing pipe diameter. We believe that the findings in this paper benefit a better understanding of the relation between the huge waves and slug/churn transition.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Science Foundation of China University of Petroleum, Beijing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3