Amplification of turbulent kinetic energy and temperature fluctuation in a hypersonic turbulent boundary layer over a compression ramp

Author:

Abstract

In this paper, direct numerical simulations in a Mach 6.0 hypersonic turbulent boundary layer over a 30 ° compression ramp are performed. The influence of shock wave/boundary layer interactions on the amplification of turbulent kinetic energy (TKE) and temperature fluctuation (TF) is explored, to provide an insight into the physical mechanism. In the initial part of the interaction region before the detachment of the shear layer, the amplification of the TKE and TF is found, via a frequency spectrum analysis, to be closely related to the low-frequency unsteadiness of the shock wave. Once the free shear layer is established, the shear component of the TKE production defined in the shear layer coordinate appears to act as the main contributor for the TKE amplification, owing to the mixing layer turbulence and the resultant Kelvin–Helmholtz instability. This is consistent with the result from the spectrum analysis that the TKE and TF amplification and their streamwise evolution are dominated by the spectral energy in the median-frequency range, arising from the mixing layer turbulence. As the flow moves downstream along the shock wave, the high-frequency spectral energy content of TF shows a decreasing trend, while the low-frequency spectral energy tends to increase gradually, implying that the shock wave low-frequency unsteadiness exists not only in the initial stage of the interaction region but also around the main shock wave. Under the combined influence of the shock wave intensity and interaction intensity, the median-frequency content appears to weaken first and then tends to increase before decreasing again. The variation amplitude appears to be small and generally dominates the distribution of the TF intensity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovation Fund of Shanghai Aerospace Science and Technology

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3