Do not forget the Rydberg orbitals

Author:

Simons Jack1ORCID

Affiliation:

1. Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA

Abstract

Within any molecule or cluster containing one or more positively charged sites, families of Rydberg orbitals exist. Free electrons can attach directly, and anionic reagents with low electron binding energy can transfer an electron into one of these orbitals to form a neutral Rydberg radical. The possibilities that such a radical could form a covalent bond either to another Rydberg radical or to a radical holding its electron in a conventional valence orbital are considered. This Perspective overviews two roles that Rydberg radicals can play, both of which have important chemical consequences. Attachment of an electron into excited Rydberg orbitals is followed by rapid (∼10−6 s) relaxation into the lowest-energy Rydberg orbital to form the ground state radical. Although the excited Rydberg species are stable with respect to fragmentation, the ground-state species is usually quite fragile and undergoes homolytic bond cleavage (e.g., –R2NH dissociates into –R2N + H or into –RNH + R) by overcoming a very small barrier on its potential energy surface, thus generating reactive radicals (H or R). Here, it is shown that as a result of this fragility, any covalent bonds formed by Rydberg radicals are weak and the molecules they form are susceptible to exothermic fragmentations that involve quite small activation barriers. Another role played by Rydberg species arises when the Coulomb potentials provided by the (one or more) positive site(s) in the molecule stabilize low-energy anti-bonding orbitals (e.g., σ* orbitals of weak σ bonds or low-lying π* orbitals) to the extent that electron attachment into these Coulomb-stabilized orbitals is rendered exothermic. In such cases, the overlap of the Rydberg orbitals on the positive site(s) with the σ* or π* orbitals allows either a free electron or a weakly bound electron to an anionic reagent that is attracted toward the positive site by its Coulomb force to be guided/transferred into the σ* or π* orbital instead. After attaching to such an anti-bonding orbital, bond cleavage occurs again, generating reactive radical species. Because of the large radial extent of Rydberg orbitals, this class of bond cleavage events can occur quite distant from the positively charged group. In this Perspective, several examples of both types of phenomena are given for illustrative purposes.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The adsorption of sulfur mustard chemical warfare agent on the Ga12N12 and Ca12O12 nanocages; A systematic DFT study;Computational and Theoretical Chemistry;2023-12

2. Computing Decay Widths of Autoionizing Rydberg States with Complex-Variable Coupled-Cluster Theory;The Journal of Physical Chemistry Letters;2023-11-30

3. The nature of the chemical bond;The Journal of Chemical Physics;2023-04-04

4. The importance of correlation in the molecular orbital picture;Chemical Reactivity;2023

5. Coupled-Cluster Theories for Excited States;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3