High-efficiency edge couplers enabled by vertically tapering on lithium-niobate photonic chips

Author:

Jia Di1ORCID,Luo Qiang1ORCID,Yang Chen2ORCID,Ma Rui1,Yu Xuanyi1,Gao Feng1ORCID,Yang Qifan2ORCID,Bo Fang1ORCID,Zhang Guoquan1ORCID,Xu Jingjun1ORCID

Affiliation:

1. MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University 1 , Tianjin 300457, China

2. State Key Laboratory for Mesoscopic Physics and Frontiers, School of Physics, Science Center for Nano-optoelectronics, Peking University 2 , Beijing 100871, China

Abstract

In the past decade, photonic integrated circuits (PICs) based on thin-film lithium niobate (TFLN) have made substantial progress in various fields, including optical communication, nonlinear photonics, and quantum optics. A critical component is an efficient edge coupler facilitating the connection between PICs and light sources or detectors. Here, we propose an innovative edge coupler design with a wedge-shaped TFLN waveguide and a silicon oxynitride cladding. Experimental results show a low coupling loss between the TFLN PIC and a 3-μm mode field diameter (MFD) lensed fiber, measuring at 1.52 dB/facet, with theoretical potential for improvement to 0.43 dB/facet. Additionally, the coupling loss between the edge coupler and a UHNA7 fiber with an MFD of 3.2 μm is reduced to 0.92 dB/facet. This design exhibits robust fabrication and alignment tolerances. Notably, the minimum linewidth of the TFLN waveguide of the coupler (600 nm) can be readily achieved using commercially available i-line stepper lithography. This work benefits the development of TFLN integrated devices, such as on-chip electro-optic modulators, frequency combs, and lasers.

Funder

National Key Research and Development Program of China

Innovative Research Group Project of the National Natural Science Foundation of China

Overseas Expertise Introduction Project for Discipline Innovation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 铌酸锂集成光子芯片端面耦合器件(特邀);Laser & Optoelectronics Progress;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3