Inorganic/organic sublattice roles in band edge photodynamics of isoelectronically substituted hybrid semiconductors

Author:

Liu Wenjie1,Wang Ziqin1ORCID,Wu Huaxin1ORCID,Zhang Xingyan1,Fan Jiyang1ORCID

Affiliation:

1. Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University , Nanjing 211189, People's Republic of China

Abstract

Zero-dimensional organic–inorganic hybrid metal halides are unique semiconductors with fruitful physical properties. Usually, only the inorganic polyhedrons dominate the band edge electronic and photophysical properties of such hybrid semiconductors, whereas the organic components mainly act as structure-stabilizing units. Herein, we study the electronic structures and photodynamics of isoelectronically Br-substituted (I) zero-dimensional organic–inorganic copper halide semiconductors (C9H14N)3Cu3(BrxI1−x)6. They are composed of both inorganic [Cu3(BrxI1−x)6]3− units and organic C9H14N+ skeletons. It is surprising to find that unlike usual organic–inorganic metal halides, although the heavily isoelectronic substitution of halogen atoms in the (C9H14N)3Cu3I6 crystal leads to significant shrinkage of the lattice, it does not remarkably alter the bandgap and luminescence peak owing to the site-projected density of states as revealed by the density functional theory calculation. The inorganic units dominate the valence band edge quantum states, whereas the organic skeletons dominate the conduction-band edge states. However, the isoelectronic substitution significantly lowers the symmetry of the crystal, and as a result, the quantum transition probability at the band edge increases first and decreases then with increasing concentration of substituting bromine atoms. The (C9H14N)3Cu3(BrxI1−x)6 crystals exhibit dual-band luminescence with large Stokes shift and near-unity quantum yield. It arises from the excitons trapped by two kinds of centers. The critical participation of the organic skeletons in the electronic structures and band edge photodynamics refresh our knowledge of their roles in the hybrid semiconductors.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3