Theoretical study on the magnetic properties of cathode materials in the lithium–ion battery

Author:

Zhang Huimin12ORCID,Zhong Yang12ORCID,Ouyang Chuying3ORCID,Gong Xingao12,Xiang Hongjun12ORCID

Affiliation:

1. Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University 1 , Shanghai 200433, People’s Republic of China

2. Shanghai Qi Zhi Institute 2 , Shanghai 200030, People’s Republic of China

3. 21C Innovation Laboratory, Contemporary Amperex Technology Ltd. (CATL) 3 , Ningde 352100, People’s Republic of China

Abstract

The layered LiMO2 (M = Co, Ni, and Mn) materials are commonly used as the cathode materials in the lithium–ion battery due to the distinctive layer structure for lithium extraction and insertion. Although their electrochemical properties have been extensively studied, the structural and magnetic properties of LiNiO2 are still under considerable debate, and the magnetic properties of monoclinic LiMnO2 are seldom reported. In this work, a detailed study of LiNiO2, LiMnO2, and a half-doped material LiNi0.5Mn0.5O2 is performed via both first-principles calculations and Monte Carlo simulations based on the effective spin Hamiltonian model. Through considering different structures, it is verified that a structure with a zigzag-type pattern is the most stable one of LiNiO2. Moreover, in order to figure out the magnetic properties, the spin exchange interactions are calculated, and then magnetic ground states are predicted in these three systems. The results show that LiNiO2 forms a spiral order that is caused by the competition from both the short-range and long-range spin exchange interactions, whereas the magnetic ground state of LiMnO2 is collinearly antiferromagnetic due to its nearest and next-nearest neighbor antiferromagnetic spin exchange interactions. However, LiNi0.5Mn0.5O2 is collinearly ferrimagnetic because of the ferromagnetic nearest neighbor Ni–Ni and Mn–Mn exchange interactions. Our work demonstrates the competition between the different exchange interactions in these cathode materials, which may be relevant to the performance of the lithium–ion battery.

Funder

National Natural Science Foundation of China

Guangdong Major Project of Basic and Applied Basic Research

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3