Hybrid PIC–fluid simulations for fast electron transport in a silicon target

Author:

Yang X. H.12ORCID,Chen Z. H.1ORCID,Xu H.23,Ma Y. Y.24ORCID,Zhang G. B.1,Zou D. B.5ORCID,Shao F. Q.5ORCID

Affiliation:

1. Department of Nuclear Science and Technology, National University of Defense Technology 1 , Changsha 410073, China

2. Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University 2 , Shanghai 200240, China

3. School of Computer Science, National University of Defense Technology 3 , Changsha 410073, China

4. College of Advanced Interdisciplinary Studies, National University of Defense Technology 4 , Changsha 410073, China

5. Department of Physics, National University of Defense Technology 5 , Changsha 410073, China

Abstract

Ultra-intense laser-driven fast electron beam propagation in a silicon target is studied by three-dimensional hybrid particle-in-cell–fluid simulations. It is found that the transverse spatial profile of the fast electron beam has a significant influence on the propagation of the fast electrons. In the case of a steep spatial profile (e.g., a super-Gaussian profile), a tight fast electron beam is produced, and this excites more intense resistive magnetic fields, which pinch the electron beam strongly, leading to strong filamentation of the beam. By contrast, as the gradient of the spatial profile becomes more gentle (e.g., in the case of a Lorentzian profile), the resistive magnetic field and filamentation become weaker. This indicates that fast electron propagation in a solid target can be controlled by modulating the spatial gradient of the laser pulse edge.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Science

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3