Single- and two-photon absorption induced all-optical control of gallium selenide integrated silicon nitride photonic devices in the 700–800 nm wavelength range

Author:

Prosad Asish1ORCID,Biswas Rabindra1ORCID,A S Lal Krishna1ORCID,Srinivas T.1,Raghunathan Varun1ORCID

Affiliation:

1. Department of Electrical Communication Engineering, Indian Institute of Science , Bangalore 560012, India

Abstract

In this work, we report single- and two-photon absorption (TPA) induced transmission and resonance modulation in a multilayer gallium selenide (GaSe) integrated silicon nitride (Si3N4) waveguide and ring resonator operating in the 700–800 nm wavelength range. Intensity dependent saturable absorption at low optical powers followed by TPA at higher power levels in GaSe integrated Si3N4 waveguides is observed at 785 nm pulsed laser excitation. A TPA coefficient of 0.117 cm/GW for the GaSe–Si3N4 composite waveguide and a three-photon absorption coefficient of 7.876 × 10−6 cm3/GW2 for the bare Si3N4 waveguide are extracted from intensity dependent transmission measurements. The single-photon absorption process induced by a blue laser incident on the multilayer GaSe transferred on top of the Si3N4 ring resonator is used for all-optical resonance tuning through the free-carrier refraction effect. A strong blue shift of the resonance by ∼12.3 pm/mW combined with resonance broadening is observed due to the free-carrier induced refractive index and absorption modulation. The TPA in the GaSe integrated Si3N4 ring resonator is also shown to result in a blue shift of the resonances excited using a 785 nm pulsed laser. This work demonstrates the all-optical control of 2D material integrated Si3N4 guided-wave structures operating in the shorter near-infrared wavelength range with potential applications in integrated quantum photonics, miniaturized sensing devices, and biomedical imaging.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3