Photocurrents, inverse Faraday effect, and photospin Hall effect in Mn2Au

Author:

Merte M.123ORCID,Freimuth F.13ORCID,Go D.1ORCID,Adamantopoulos T.12ORCID,Lux F. R.3ORCID,Plucinski L.1,Gomonay O.3ORCID,Blügel S.1ORCID,Mokrousov Y.13ORCID

Affiliation:

1. Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA 1 , 52425 Jülich, Germany

2. Department of Physics, RWTH Aachen University 2 , 52056 Aachen, Germany

3. Institute of Physics, Johannes Gutenberg University Mainz 3 , 55099 Mainz, Germany

Abstract

Among antiferromagnetic materials, Mn2Au is one of the most intensively studied, and it serves as a very popular platform for testing various ideas related to antiferromagnetic magnetotransport and dynamics. Since recently, this material has also attracted considerable interest in the context of optical properties and optically-driven antiferromagnetic switching. In this work, we use first principles methods to explore the physics of charge photocurrents, spin photocurrents, and the inverse Faraday effect in antiferromagnetic Mn2Au. We predict the symmetry and magnitude of these effects and speculate that they can be used for tracking the dynamics of staggered moments during switching. Our calculations reveal the emergence of large photocurrents of spin in collinear Mn2Au, whose properties can be understood as a result of a non-linear optical version of the spin Hall effect, which we refer to as the photospin Hall effect, encoded into the relation between the driving charge and resulting spin photocurrents. Moreover, we suggest that even a very small canting in Mn2Au can give rise to colossal spin photocurrents that are chiral in flavor. We conclude that the combination of staggered magnetization with the structural and electronic properties of this material results in a unique blend of prominent photocurrents, which makes Mn2Au a unique platform for advanced optospintronics applications.

Funder

Deutsche Forschungsgemeinschaft

EU H2020

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3